3,883 research outputs found

    Comparison of AGASA data with CORSIKA simulation

    Full text link
    An interpretation of AGASA (Akeno Giant Air Shower Array) data by comparing the experimental results with the simulated ones by CORSIKA (COsmic Ray SImulation for KASCADE) has been made. General features of the electromagnetic component and low energy muons observed by AGASA can be well reproduced by CORSIKA. The form of the lateral distribution of charged particles agrees well with the experimental one between a few hundred metres and 2000 m from the core, irrespective of the hadronic interaction model studied and the primary composition (proton or iron). It does not depend on the primary energy between 10^17.5 and 10^20 eV as the experiment shows. If we evaluate the particle density measured by scintillators of 5 cm thickness at 600 m from the core (S_0(600), suffix 0 denotes the vertically incident shower) by taking into account the similar conditions as in the experiment, the conversion relation from S_0(600) to the primary energy is expressed as E [eV] = 2.15 x 10^17 x S_0(600)^1.015, within 10% uncertainty among the models and composition used, which suggests the present AGASA conversion factor is the lower limit. Though the form of the muon lateral distribution fits well to the experiment within 1000 m from the core, the absolute values change with hadronic interaction model and primary composition. The slope of the rho_mu(600) (muon density above 1 GeV at 600 m from the core) vs. S_0(600) relation in experiment is flatter than that in simulation of any hadronic model and primary composition. Since the experimental slope is constant from 10^15 eV to 10^19 eV, we need to study this relation in a wide primary energy range to infer the rate of change of chemical composition with energy. keywords: cosmic ray, extensive air shower, simulation, primary energy estimation PACS number ; 96.40.De, 96.40.PqComment: 30 pages, 15 figures, accepted by Astroparticle Physics at 6. Dec 199

    Warm absorber, reflection and Fe K line in the X-ray spectrum of IC 4329A

    Get PDF
    Results from the X-ray spectral analysis of the ASCA PV phase observation of the Seyfert 1 galaxy IC 4329A are presented. We find that the 0.4 - 10 keV spectrum of IC 4329A is best described by the sum of a steep (Γ∼1.98\Gamma \sim 1.98) power-law spectrum passing through a warm absorber plus a strong reflection component and associated Fe K line, confirming recent results (Madejski et al. 1995, Mushotsky et al. 1995). Further cold absorption in excess of the Galactic value and covering the entire source is also required by the data, consistent with the edge-on galactic disk and previous X-ray measurements. The effect of the warm absorber at soft X-ray energies is best parameterized by two absorption edges, one consistent with OVI, OVII or NVII, the other consistent with OVIII. A description of the soft excess in terms of blackbody emission, as observed in some other Seyfert 1 galaxies, is ruled out by the data. A large amount of reflection is detected in both the GIS and SIS detectors, at similar intensities. We find a strong correlation between the amount of reflection and the photon index, but argue that the best solution with the present data is that given by the best statistical fit. The model dependence of the Fe K line parameters is also discussed. Our best fit gives a slightly broad (σ≃0.11±0.08\sigma \simeq 0.11 \pm 0.08 keV) and redshifted (E ≃6.20±0.07\simeq 6.20 \pm 0.07 keV) Fe K line, with equivalent width ≃\simeq 89 ±\pm 33 eV. The presence of a weak Fe K line with a strong reflection can be reconciled if one assumes iron underabundances or ionized reflection. We also have modeled the line with a theoretical line profile produced by an accretion disk. This yields results in better agreement with the constraints obtained from the reflection component.Comment: Accepted for publication in The Astrophysical Journal, 10th February 1996 issue; 24 pages and 8 figures + 1 table tared, compressed and uuencoded (with uufiles

    Core structure of EAS in 10(15) to 10(17) eV

    Get PDF
    With the use of Akeno calorimeter, the attenuation of particles in concrete is analyzed as the function of the shower size of 10 to the 5th power to 10 to the 7th power. The attenuation length does not depend much on the shower size but depends a little on the shower age. The average value is approx. 150 g/sq cm for s = 0.5 to 0.85 and approx. 40 g/sq cm for s = 0.85 to 1.15. These values and their fluctuations are consistent with the equi-intensity curves of extensive air showers (EAS)

    Recent progress of GaAsP HPD development for the MAGIC telescope project

    Full text link
    Today the Hybrid Photon Detector (HPD) is one of the few low light level (LLL) sensors that can provide an excellent single and multiple photoelectron (ph.e.) amplitude resolution. The recently developed HPDs for the MAGIC telescope project with a GaAsP photocathode, namely the R9792U-40, provide a peak quantum efficiency (QE) of more than 50% and a pulse width of ~2 nsec. In addition, the afterpulsing rate of these tubes is very low compared to that of conventional photomultiplier tubes (PMTs), i.e. the value is ~300 times lower. Photocathode aging measurements showed life time of more than 10 years under standard operating conditions of the Cherenkov Telescopes. Here we want to report on the recent progress with the above mentioned HPDs.Comment: Contribution to the 30th ICRC, Merida Mexico, July 2007 on behalf of the MAGIC Collaboratio

    Development of Atmospheric Monitoring System at Akeno Observatory for the Telescope Array Project

    Get PDF
    We have developed an atmospheric monitoring system for the Telescope Array experiment at Akeno Observatory. It consists of a Nd:YAG laser with an alt-azimuth shooting system and a small light receiver. This system is installed inside an air conditioned weather-proof dome. All parts, including the dome, laser, shooter, receiver, and optical devices are fully controlled by a personal computer utilizing the Linux operating system. It is now operated as a back-scattering LIDAR System. For the Telescope Array experiment, to estimate energy reliably and to obtain the correct shower development profile, the light transmittance in the atmosphere needs to be calibrated with high accuracy. Based on observational results using this monitoring system, we consider this LIDAR to be a very powerful technique for Telescope Array experiments. The details of this system and its atmospheric monitoring technique will be discussed.Comment: 24 pages, 13 figures(plus 3 gif files), Published in NIM-A Vol.488, August 200
    • …
    corecore